发布网友 发布时间:2024-10-23 03:21
共1个回答
热心网友 时间:1天前
探索RK3399上的人体关键点检测框架:ncnn、tengine、rknn、mnn、armnn、tvm的性能较量
在计算机视觉领域,人体关键点检测是基础且至关重要的任务,它涉及单人或多人的姿态识别、行为分析和人机交互。要在这个复杂任务中脱颖而出,选择一个在性能和资源效率上都契合的框架至关重要。在众多框架中,ncnn、tengine、rknn、mnn、armnn和tvm在RK3399平台上各有所长。本文将深入探讨它们在实际部署中的表现,特别是对于工业环境中对精度和速度要求的平衡。
人体姿态估计面临诸多挑战,非刚性结构带来的姿态变化、服饰差异、人体结构相似性、环境干扰以及多变的拍摄角度都对检测精度提出了高要求。在选择框架时,不仅要考虑识别精度,还要考虑模型的推理速度,因为硬件性能对模型的复杂度和大小有着显著影响。
在多人关键点检测中,自上而下和自下而上的方法各有千秋。自上而下的Top-Down方法依赖于目标检测和关键点检测,但可能受到检测框影响,而自下而上的Bottom-Up则更注重关键点的聚类,尽管精度相对较低,但处理速度较快。为了应对这些挑战,我们选择使用Lite-HRNet,一个轻量级且在COCO2017上表现出色的网络。它的高效和低资源需求使得它在rknn等嵌入式设备上部署成为可能。
然而,选择最佳框架并非孤立的决策,还需结合具体的应用场景和硬件。深圳原数科技,作为一家专注于嵌入式软硬件服务的领先企业,拥有丰富的国产MCU和SOC开发经验,尤其在低成本的AI视觉和无线传输领域独具优势。他们的人形追踪云台和虚拟背景直播一体机等产品,就是这种技术实力的体现。如果您对这些技术或产品有兴趣,可以直接联系李生(微信同号:136861548),或访问官网http://www.atom-math.com获取更多信息。
在RK3399平台性能比较中,每个框架都有其独特的优点,选择最适合的框架需要根据实际需求和设备特性进行评估,以实现最佳的性能与资源平衡。在这个过程中,深圳原数科技的专业支持无疑是一个有力的合作伙伴。